MID-SEMESTER EXAMINATION B. MATH III YEAR, II SEMESTER February 2017 ANALYSIS IV.

1. Let (X, d) and (Y, ρ) be metric spaces. On $X \times Y$, consider $r((x_1, y_1), (x_2, y_2)) = \sqrt{d(x_1, x_2)^2 + \rho(y_1, y_2)^2}$. Show that r is a metric.

Solution: Staraightforward verification.

2. Let X be a metric spac and A be a compact set in X with more than two points. Show that the diameter of A is d(a, b) for some $a, b \in A$.

Solution: By definition, the diameter is $d(A) = \sup\{d(x, y) : x, y \in A\}$. Again, there exist (x_n) and (y_n) in A, such that $d(x_n, y_n) \to d(A)$ as $n \to \infty$. From the compactness of A, we have subsequences (x_{n_k}) and (y_{m_k}) , each having limit points, say x and y in A. Then d(A) = d(x, y).

3. Show that the set of all irrationals with sup metric is separable.

Solution: We need a countable set of irrations, which is dense in the set of irrationals. Let $\{q_1, q_2, \dots, \}$ be the enumeration of rationals. Choose irrational $r_{j,k}$ that lies in $(q_j - 1/k, q_j + 1/k)$. Then these irrationals are dense in the given set.

4. If (X, d) is a complete metric space and A is totally bounded in X, then \overline{A} is compact in X.

Solution: This is available in standard books; see Simmons, for example. 5. Let (X, d) be a compact metric space. Let (U_{α}) be family of open sets in X whose union is X. Show that there is a countable sub-family of the given family, that covers X.

Solution: Standard.

6. Show that $G = \{f \in C[0,1] : \sup |f(t)| \le 1\}$ is not an equicontinuous set.

Solution: Define $h_n: [-1,1] \to \mathbb{R}$ by

$$h_n(x) = \begin{cases} -1, & \text{if } x < -1/n \\ nx, & \text{if } -1/n \le x \le 1/n \\ 1 & \text{if } x > 1/n. \end{cases}$$
(0.1)

The given family is not equicontinuous at 0. Equicontinuity at 0 means that, for $\epsilon > 0$, there exists δ so that $|h_n(x) - 0| < \epsilon$ whenever $|x| < \delta$, for all n. From this it follows that if x_k converges to 0, then $h_n(x_k)$ converges to 0 as k goes to ∞ , uniformly in n. But the given function does not satisfy this. For example, $x_k = \frac{1}{\sqrt{k}}$ goes to 0. But $h_k(x_k) = 1$ for all k. 7. Give examples of metric spaces X and Y and a uniformly continuous function $f : X \to Y$ such that for no 0 < c < 1, the function satisifies $d_1(f(x), f(y)) \leq cd_2(x, y)$.

Solution: Consider the function f(x) = 4x(1-x) from [0, 1] to itself. This is uniformly continuous. There cannot be a c as in the question. If there is, then the iterates $f^n(x)$ converges to a unique point. But this is not true. Banach fixed point theorem gives the result.

8. Let f be a continuous function on [0, 1] with f(0) = 0. Show that there is a polynomial p with p(0) = 0 such that $\sup |f(t) - p(t)| \le \epsilon$.

Solution: Follow Weirstrass theorem's proof.